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Abstract

The ability to dynamically adapt an unstructured grid is a powerful tool for ef-
�ciently solving computational problems with evolving physical features. In this
paper, we report on our experience parallelizing an edge-based adaptation scheme,
called 3D TAG, using message passing. Results show excellent speedup when a
realistic helicopter rotor mesh is randomly re�ned. However, performance deteri-
orates when the mesh is re�ned using a solution-based error indicator since mesh
adaptation for practical problems occurs in a localized region, creating a severe
load imbalance. To address this problem, we have developed PLUM, a global dy-
namic load balancing framework for adaptive numerical computations. Even though
PLUM primarily balances processor workloads for the solution phase, it reduces the
load imbalance problem within mesh adaptation by repartitioning the mesh after
targeting edges for re�nement but before the actual subdivision. This dramatically
improves the performance of parallel 3D TAG since re�nement occurs in a more load
balanced fashion. We also present optimal and heuristic algorithms that, when ap-
plied to the default mapping of a parallel repartitioner, signi�cantly reduce the data
redistribution overhead. Finally, portability is examined by comparing performance
on three state-of-the-art parallel machines.

1 Work supported by Director, O�ce of Computational and Technology Research,
Division of Mathematical, Information, and Computational Sciences of the U.S. De-



1 Introduction

Unstructured grids 2 for solving computational problems have two major ad-
vantages over structured grids. First, unstructured meshes enable e�cient grid
generation around highly complex geometries. Second, appropriate unstruc-
tured-grid data structures facilitate the rapid insertion and deletion of points
to allow the mesh to locally adapt to the solution.

Two solution-adaptive strategies are commonly used with unstructured-grid
methods. Regeneration schemes generate a new grid with a higher or lower
concentration of points in di�erent regions depending on an error indicator. A
major disadvantage of such schemes is that they are computationally expen-
sive. This is a serious drawback for unsteady problems where the mesh must
be frequently adapted. However, resulting grids are usually well-formed with
smooth transitions between regions of coarse and �ne mesh spacing.

Local mesh adaptation, on the other hand, involves adding points to the ex-
isting grid in regions where the error indicator is high, and removing points
from regions where the indicator is low. The advantage of such strategies is
that relatively few mesh points need to be inserted/deleted at each re�ne-
ment/coarsening step for unsteady problems. However, complicated logic and
data structures are required to track the points that are added and removed.

For problems that evolve with time, local mesh adaptation procedures have
proved to be robust, reliable, and e�cient. By redistributing the available
mesh points to capture physical phenomena of interest, such procedures make
standard computational methods more cost e�ective. Highly localized regions
of mesh re�nement are required in order to accurately capture shock waves,
contact discontinuities, vortices, and shear layers. This provides scientists the
opportunity to obtain solutions on adapted meshes that are comparable to
those obtained on globally-re�ned grids but at a much lower cost. Even though
adaptive mesh algorithms are commonly used for problems in 
uid 
ow and
structural mechanics, they are also of signi�cant interest in several other areas
like computer vision and graphics.

Advances in adaptive software and methodology notwithstanding, parallel
computational strategies will be an essential ingredient in solving complex real-
life problems. However, parallel computers are usually easier to program with
regular data structures; so the development of e�cient parallel adaptive algo-
rithms for unstructured grids (that use complex data structures and indirect

partment of Energy under contract number DE-AC03-76SF00098.Work supported
by NASA under Contract Numbers NAS 2-96027 with USRA and NAS 2-14303
with MRJ Technology Solutions.
2 The terms grid and mesh are used synonymously throughout this paper.
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addressing) poses a serious challenge. Their parallel performance for supercom-
puting applications not only depends on the design strategies, but also on the
choice of e�cient data structures which must be amenable to simple manipula-
tion without signi�cant memory contention (for shared-memory architectures)
or communication overhead (for message-passing architectures). Nonetheless,
it is generally believed that adaptive unstructured-grid techniques will consti-
tute a signi�cant fraction of future high-performance computing.

Considerable research has been done to design sequential algorithms to e�ec-
tively use unstructured meshes for 
uid 
ow applications, e.g., the solution
of the Euler equations. Unfortunately, many of these techniques cannot take
advantage of the power of parallel computing due to the di�culties of porting
these codes onto distributed-memory architectures. Recently, several adap-
tive schemes have been successfully developed in a parallel environment. Most
of these codes are based on two-dimensional �nite elements [1,2,4,7,15,22],
and some progress has been made towards three-dimensional unstructured-
mesh simulations [18,24,25]. Various dynamic load balancing methods for
unstructured-grid applications have also been reported to date [8{10,14,19,29{
31]; however, most of them lack a global view of loads across all processors.
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Fig. 1. Overview of our global dynamic load balancing framework for adaptive nu-
merical computations.

Figure 1 depicts our global dynamic load balancing framework for adaptive
computations. Called PLUM, it essentially consists of a numerical solver and
our mesh adaptor, with a partitioner and a remapper that load balance and
redistribute the computational mesh when necessary. The mesh is �rst parti-
tioned and mapped among the available processors. The initialization phase
distributes the global data among the processors and generates a database for
all shared objects 3 . The numerical solver then runs for several iterations, up-
dating solution variables that are typically stored at the vertices of the mesh.

3 The term object is used generically to denote a vertex, edge, tetrahedron, or face

3



When an acceptable solution is obtained, local mesh adaptation is performed
to generate a new computational mesh, if so desired. A quick evaluation step
determines if the new mesh is su�ciently unbalanced to warrant a repartition-
ing. If the current partitioning indicates that it is adequately load balanced,
control is passed back to the solver. Otherwise, a mesh repartitioning proce-
dure is invoked to divide the new grid into subgrids. The new partitions are
then reassigned to the processors in a way that minimizes the cost of data
movement. If the cost of remapping the data is less than the computational
gain that would be achieved with balanced partitions, all necessary data is
appropriately redistributed. Otherwise, the new partitioning is discarded and
the calculation continues on the old partitions. The �nalization step combines
the local grids on each processor into a single global mesh. This is usually
required for some post-processing tasks, such as visualization, or to save a
snapshot of the grid on secondary storage for future restart runs.

Notice from the framework in Fig. 1 that the computational load is balanced
and the runtime communication reduced only for the solver but not for the
mesh adaptor. This is important since solvers are usually several times more
expensive. However, parallel performance for the mesh adaptation procedure
can be signi�cantly improved if the mesh is repartitioned and remapped in a
load balanced fashion after edges are targeted for re�nement and coarsening
but before performing the actual adaptation. This strategy also reduces the
redistribution cost signi�cantly since a smaller volume of data is moved.

The numerical solver is usually application-dependent, and is beyond the scope
of this paper. Here, we focus on some of the tools that enable numerical sim-
ulations to be accomplished rapidly and e�ciently. Parallel mesh adaptation
and dynamic load balancing are two such critical tools.

2 Tetrahedral Mesh Adaptation

We �rst give a brief description of the tetrahedral mesh adaptation scheme [6]
that is used in this work to better explain the modi�cations that were made
for the distributed-memory implementation. The 5,000-line C code, called
3D TAG, has its data structures based on edges that connect the vertices
of a tetrahedral mesh. This means that the elements 4 and boundary faces are
de�ned by their edges rather than by their vertices. These edge-based data
structures make the mesh adaptation procedure capable of e�ciently perform-
ing anisotropic re�nement and coarsening. A successful data structure must
contain the right amount of information to rapidly reconstruct the mesh con-

in the mesh.
4 The terms element and tetrahedron are used synonymously throughout this paper.
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nectivity when vertices are added or deleted while having reasonable memory
requirements.

2.1 The Algorithm

At each mesh adaptation step, individual edges are marked for coarsening,
re�nement, or no change, based on an error indicator calculated from the
solution. Edges whose error values exceed a user-speci�ed upper threshold are
targeted for subdivision. Similarly, edges whose error values lie below another
user-speci�ed lower threshold are targeted for removal. Only three subdivision
types are allowed for each tetrahedral element and these are shown in Fig. 2.
The 1:8 isotropic subdivision is implemented by adding a new vertex at the
mid-point of each of the six edges. The 1:4 and 1:2 subdivisions can result
either because the edges of a parent tetrahedron are targeted anisotropically
or because they are required to form a valid connectivity for the new mesh.
When an edge is bisected, the solution quantities are linearly interpolated at
the mid-point from its two end-points.

1:8 1:4 1:2

Fig. 2. Three types of subdivision are permitted for a tetrahedral element.

Mesh re�nement is performed by �rst setting a bit 
ag to one for each edge
that is targeted for subdivision. The edge markings for each element are then
combined to form a 6-bit pattern as shown in Fig. 3 where the edges marked
with an `R' are the ones to be bisected. Elements are continuously upgraded to
valid patterns corresponding to the three allowed subdivision types (cf. Fig. 2)
until none of the patterns show any change. Once this edge marking is com-
pleted, each element is independently subdivided into smaller child elements
based on its binary pattern. Special data structures are used to ensure that
this process is computationally e�cient.

Mesh coarsening also uses the edge-marking patterns. If a child element has
any edge marked for coarsening, this element and its siblings are removed
and their parent is reinstated. Parent edges and elements are retained at each
re�nement step so they do not have to be reconstructed. Reinstated parent
elements have their edge-marking patterns adjusted to re
ect that some edges
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Fig. 3. Sample edge-marking pattern for element subdivision.

have been coarsened. The parents are then subdivided based on their new pat-
terns by invoking the mesh re�nement procedure. As a result, the coarsening
and re�nement procedures share much of the same logic.

Details of the data structures are given in [6]; however, a brief description of
the salient features is necessary to understand the distributed-memory imple-
mentation of the mesh adaptation code. Pertinent information is maintained
for the vertices, elements, edges, and boundary faces of the mesh. Each vertex
also has a linked list of pointers to all the edges that are incident upon it.
Similarly, each edge has a list of pointers to all the elements that share it.
Such lists eliminate extensive searches and are crucial to the e�ciency of the
overall adaptation scheme.

2.2 Parallel Implementation

The parallel version of the 3D TAG mesh adaptation code contains an ad-
ditional 3,000 lines of C++ with Message-Passing Interface (MPI), allowing
portability to any system supporting these languages. This code is a wrap-
per around the original mesh adaptation program written in C, and required
the addition of only 10 instructions to link it with the parallel constructs. The
object-oriented approach allowed us to build a clean interface between the two
layers of the program while maintaining e�ciency. Only a slight increase in
space was necessary to keep track of the global mappings and shared processor
lists (SPLs) for objects on partition boundaries.

Parallel 3D TAG consists of three phases: initialization, execution, and �nal-
ization. The initialization step consists of scattering the global data across the
processors, de�ning a local numbering scheme for each object, and creating
the mapping for objects that are shared by multiple processors. The execu-
tion step runs a copy of 3D TAG on each processor that re�nes or coarsens
its local region, while maintaining a globally-consistent grid along partition
boundaries. Parallel performance is extremely critical during this phase since
it will be executed several times during a computation. Finally, a gather op-
eration is performed in the �nalization step to combine the local grids into
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one global mesh. Locally-numbered objects and the corresponding pointers are
reordered to represent one single consistent mesh. Note from Fig. 1 that the
initialization and �nalization phases are invoked only once for each problem
outside the solution$execution$load balancing cycle.

In order to perform parallel mesh adaptation, the initial grid must �rst be
partitioned among the available processors. A good partitioner minimizes the
total execution time by equidistributing the workload and reducing the inter-
processor communication. However, it is also important within our framework
that the partitioning phase be performed rapidly. There are several excel-
lent heuristic algorithms for solving the NP-hard graph partitioning prob-
lem [17,25,26,29,31]. We used the ParMETIS [16] parallel multilevel partition-
ing algorithm for the test cases in this paper. ParMETIS reduces the size of the
graph by collapsing vertices and edges using a heavy edge matching scheme,
applies a greedy graph growing algorithm for partitioning the coarsest graph,
and then uncoarsens it back using a combination of boundary greedy and
Kernighan-Lin re�nement to construct a partitioning for the original graph.

2.2.1 Initialization

The initialization phase takes as input the global initial grid and the cor-
responding partitioning that maps each tetrahedral element to exactly one
partition. The element data and partition information are then broadcast to
all processors which, in parallel, assign a local, zero-based natural number to
each element. We are thus assuming that an initial tetrahedral mesh exists,
and that it is partitioned among the available processors. Once the elements
have been processed, local edge information can be computed.

In three dimensions, an individual edge may belong to an arbitrary number of
elements. Since each element is assigned to only one partition, it is theoretically
possible for an edge to be shared by all the processors. For each partition, a
local zero-based natural number is assigned to every edge that belongs to
at least one element. Each processor then rede�nes its elements in terms of
these local edge numbers. Edges that are shared by more than one processor
are identi�ed by searching for elements that lie on partition boundaries. A
bit 
ag is set to distinguish between shared and internal edges. A SPL is
also generated for each shared edge. Finally, the element list for each edge is
updated to contain only the local elements.

Every local vertex is also assigned a zero-based natural number in each parti-
tion. Next, the local edge list for each vertex is created from the appropriate
subset of the global list. Like shared edges, each shared vertex must be iden-
ti�ed and assigned its SPL. A naive approach would be to thread through
the data structures to the elements and their partitions to determine which
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Fig. 4. An example showing why communication is needed to form the SPL for a
shared vertex.

vertices lie on partition boundaries. But this procedure requires excessive indi-
rection. A faster approach is based on the following two properties of a shared
vertex: it must be an end-point for at least one shared edge, and its SPL is
the union of its shared edges' SPLs. However, some communication is required
when using this method. For each vertex containing a shared edge, that edge's
SPL is communicated to the processors in the SPLs of all other shared edges
until the union of all the SPLs is formed. For the cases in this paper, this
process required no more than three iterations, and all shared vertices were
processed as a function of the number of shared edges plus a small communi-
cation overhead. An example is shown in Fig. 4 where the SPL is being formed
in P0 for the center vertex that is shared by three other processors. Without
communication, P0 would incorrectly conclude that the vertex is shared only
with P1 and P3.

The �nal step in the initialization phase is the local renumbering of the exter-
nal boundary faces 5 . Since a boundary face belongs to only one element, it
is never shared among processors. Each boundary face is de�ned by its three
edges, while each edge maintains a pair of pointers to the boundary faces it
de�nes. Since the global mesh is closed (water-tight), an edge on the exter-
nal boundary is shared by exactly two boundary faces. However, when the
mesh is partitioned, this is no longer true. An a�ected edge creates an empty
ghost boundary face in each of the two processors for the execution phase.
The ghost boundary faces do not participate in the adaptation process but
are required to create a valid subgrid in each processor. These ghost faces are
later eliminated during the �nalization stage.

A new data structure has been added to the serial code to represent all this
shared information. Each shared edge and vertex contains a two-way mapping
between its local and its global numbers 6 , and a SPL of processors where
its shared copies reside. The maximum additional storage depends on the

5 The internal faces are not stored in the mesh data structures.
6 The global numbers for the various mesh objects are obtained trivially during the
initialization phase.
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number of processors used and the fraction of shared objects. For the cases in
this paper, this was less than 10% of the memory requirements of the serial
version.

2.2.2 Execution

The �rst step in the actual mesh adaptation phase is to target edges for re�ne-
ment or coarsening. This is usually based on an error indicator for each edge
that is computed from the solution. This strategy results in a symmetrical
marking of all shared edges across partitions since such edges have the same
numerical and geometrical information regardless of their processor number.
However, elements have to be continuously upgraded to one of the three al-
lowed subdivision patterns shown in Fig. 2. This causes some propagation of
edges being targeted that could mark local copies of shared edges inconsis-
tently. This is because the local geometry and marking patterns a�ect the
nature of the propagation. Communication is therefore required after each
iteration of the propagation process. Every processor sends a list of all the
newly-marked local copies of shared edges to all the other processors in their
SPLs. This process may continue for several iterations, and edge markings
could propagate back and forth across partitions.

Figure 5 shows a two-dimensional example of two iterations of the propagation
process across a partition boundary. The process is similar in three dimensions.
Processor P0 marks its local copy of shared edge GE1 and communicates
that to P1. P1 then marks its own copy of GE1, which causes some internal
propagation because element marking patterns must be upgraded to those
that are valid. Note that P1 marks its third internal edge and its local copy of
shared edge GE2 during this phase. Marking information about GE2 is then
communicated to P0, and the propagation phase terminates. The four original
triangles can now be correctly subdivided into a total of 12 smaller triangles.

Once all edge markings are complete, each processor executes the mesh adap-
tation code without the need for further communication, since all edges are
consistently marked. The only task remaining is to update the shared edge
and vertex information as the mesh is adapted. This is handled as a post-
processing phase.

New edges and vertices that are created during re�nement are assigned shared
processor information that depends on several factors. Four di�erent cases can
occur when new edges are created:

� If an internal edge is bisected, the center vertex and all new edges incident
on that vertex are also internal to the partition. Shared processor informa-
tion is not required in this case.

� If a shared edge is bisected, its two children and the center vertex inherit
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Fig. 5. A two-dimensional example showing communication during propagation of
the edge marking phase.

its SPL, since they lie on the same partition boundary.
� If a new edge is created in the interior of an element, it is internal to the
partition since processor boundaries only lie along element faces. Shared
processor information is not required.

� If a new edge is created that lies across an element face, communication is
required to determine whether it is shared or internal. If it is shared, the
SPL must be formed.

All the cases are straightforward, except for the last one. If the intersection of
the SPLs of the two end-points of the new edge is null, the edge is internal.
Otherwise, communication is required with the shared processors to determine
whether they have a local copy of the edge. This communication is necessary
because no information is stored about the internal faces of the tetrahedral
elements. An alternate solution would be to incorporate internal faces as an
additional object into the data structures, and maintaining it through the
adaptation. However, this strategy does not compare favorably in terms of
memory or CPU time to a single communication at the end of the re�nement
procedure. This is primarily because the number of triangular faces for a
tetrahedral mesh is asymptotically ten times the number of mesh vertices.

Figure 6 shows the top view of a tetrahedron in processor P0 that shares
two faces with P1 while the third face is internal. The fourth face is not
shown and is irrelevant for this example. Assume that due to mesh re�nement,
three new edges LE1, LE2, and LE3, are formed in P0. An intersection of
the SPLs for the two end-points of all the three edges yields P1. However,
when P0 communicates this information to P1, P1 will only have local copies
corresponding to LE1 and LE2. Thus, P0 would be able to correctly classify
LE1 and LE2 as shared edges but LE3 as an internal edge.
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Fig. 6. An example showing how a new edge across a face is classi�ed as shared or
internal.

The coarsening phase purges the data structures of all edges that are removed,
as well as their associated vertices, elements, and boundary faces. No new
shared processor information is generated since no mesh objects are created
during this step. However, objects are renumbered as a result of compaction
and all internal and shared data are updated accordingly. The re�nement
routine is then invoked to generate a valid mesh from the vertices left after
the coarsening.

2.2.3 Finalization

Under certain conditions, it is necessary to create a single global mesh after one
or more adaptation steps. Some post processing tasks, such as visualization,
need to process the whole grid simultaneously. Storing a snapshot of a grid
for future restarts could also require a global view. Our �nalization phase
accomplishes this goal by merging the individual subgrids into one global
data structure.

Each local object is �rst assigned a unique global number. Next, all local data
structures are updated in terms of these global numbers. Finally, gather oper-
ations are performed to a host processor to create the global mesh. Individual
processors are responsible for correctly arranging the data so that the host
only collects and concatenates without further processing.

It is relatively simple to assign global element numbers since elements are
not shared among processors. By performing a scan-reduce add 7 on the total
number of elements, each processor can assign the �nal global element number.
The global boundary face numbering is also done similarly since they too are
not shared among processors.

Assigning global numbers to edges and vertices is somewhat more complicated
since they may be shared by several processors. Each shared edge (and vertex)
is assigned an owner from its SPL which is then responsible for generating the

7 A scan-reduce add operation creates a vector whose ith element is the addition
of the �rst i� 1 elements of the argument vector.
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global number. Owners are randomly selected to keep the computation and
communication loads balanced. Once all processors complete numbering their
edges (and vertices), a communication phase propagates the global values from
owners to other processors that have local copies.

After global numbers have been assigned to every object, all data structures
are updated to contain consistent global information. Since elements and
boundary faces are unique in each processor, no duplicates exist. All unowned
edge copies are removed from the data structures, which are then compacted.
However, the element lists cannot be discarded for the unowned edges. Some
communication is required to adjust the pointers in the local lists so that
global lists can be formed without any serial computation. The pair of point-
ers to the two boundary faces that were split during the initialization phase
for shared edges are glued back by communicating appropriate information to
the owner. Vertex data structures are updated much like edges except for the
manner in which their edge lists are handled. Since shared vertices may con-
tain local copies of the same global edge in their lists on di�erent processors,
the unowned edge copies are �rst deleted. Pointers are next adjusted as in the
element lists case with some communication among processors.

At this time, all processors have updated their local data with respect to their
relative positions in the �nal global data structures. A gather operation by a
host processor is performed to concatenate the local data structures. The host
can then interface the global mesh directly to the appropriate post-processing
module without having to perform any serial computation.

3 Dynamic Load Balancing

PLUM [20] is a novel method to dynamically balance the processor workloads
for unstructured adaptive-grid computations with a global view. It has �ve
salient features:

� Repeated use of the initial mesh dual graph keeps the connectivity and par-
titioning complexity constant during the course of an adaptive computation.

� Parallel mesh repartitioning avoids a potential serial bottleneck.
� Fast heuristic remapping assigns partitions to processors so that the redis-
tribution cost is minimized.

� E�cient data movement signi�cantly reduces the cost of remapping and
mesh subdivision.

� Accurate metrics estimate and compare the computational gain and the re-
distribution cost of having a balanced workload after each mesh adaptation.

12



3.1 Repartitioning the Initial Mesh Dual Graph

Repeatedly using the dual of the initial computational mesh for dynamic load
balancing is one of the key features of PLUM. Each dual graph vertex has two
associated weights: wcomp models the workload for the corresponding element,
and wremap models the cost of moving the element from one processor to an-
other. Every edge of the dual graph also has a weight, wcomm, that models the
runtime interprocessor communication. These three weights are determined
by the numerical algorithm and the data structures. In this work, wcomp is set
to the number of leaf elements in the re�nement tree, wremap is set to the total
number of elements in the re�nement tree, and wcomm is set to the number
of faces in the computational mesh that corresponds to the dual graph edge.
The mesh connectivity, wcomp, and wcomm, together determine how balanced
partitions with minimum runtime communication are formed. The wremap de-
termine how partitions should be assigned to processors such that the data
redistribution cost is minimized. New computational grids obtained by hier-
archical adaptation are translated to wcomp and wremap for every vertex and
to wcomm for every edge in the dual mesh. If the dual graph with a new set of
weights is deemed unbalanced, the mesh is repartitioned using ParMETIS [16].

3.2 Processor Reassignment

New partitions generated by a partitioner must be mapped to processors such
that the data redistribution cost is minimized. In general, the number of new
partitions is an integer multiple F of the number of processors, and each
processor is assigned F unique partitions. Allowing multiple partitions per
processor reduces the volume of data movement at the expense of partitioning
and processor reassignment times [20]; however, setting F to unity su�ces for
most practical applications.

We �rst generate a similarity matrix M that indicates how the remapping
weights wremap of the new partitions are distributed over the processors. Entry
Mij is the sum of the wremap values of all the dual graph vertices in new
partition j that already reside on processor i. The cost function needed to
solve the processor reassignment problem using M is usually architecture-
dependent. We present three metrics: TotalV, MaxV, and MaxSR, which model
the remapping cost on most multiprocessor systems. TotalV minimizes the
total volume of data moved among all the processors, MaxV minimizes the
maximum
ow of data to or from any single processor, while MaxSRminimizes
the sum of the maximum 
ow of data to and from any processor. A greedy
heuristic algorithm to minimize the remapping overhead is also presented.

13



3.2.1 TotalV Metric

The TotalV metric assumes that the remapping time can be minimized by
reducing network contention, i.e., by reducing the total number of elements
moved. To minimize TotalV, each processor i must be assigned F unique
partitions ji f , f = 1; 2; : : : ; F , such that the objective

PX
i=1

FX
f=1

Miji f

is maximized subject to the constraint

ji r 6= jk s; for i 6= k or r 6= s; i; k = 1; 2; : : : ; P ; r; s = 1; 2; : : : ; F:

We can optimally solve this by mapping it to a network 
ow optimization
problem described as follows. Let G = (V;E) be an undirected graph. G is
bipartite if V can be partitioned into two sets A and B such that every edge
has one vertex in A and the other vertex in B. Amatching is a subset of edges,
no two of which share a common vertex. A maximum cardinality matching is
one that contains as many edges as possible. IfG has a real-valued cost on each
edge, we can consider the problem of �nding a maximum cardinality matching
whose total edge cost is maximized.We refer to this as the maximally weighted

bipartite graph (MWBG) problem (also known as the assignment problem).

When F = 1, optimally solving for the TotalV metric trivially reduces to
MWBG, where V consists of P processors and P partitions in each set. An
edge of weightMij connects vertex i of the �rst set and vertex j of the second
set. If F > 1, the processor reassignment problem can be reduced to MWBG
by replicating each processor and all of its incident edges F times. After the
optimal solution is obtained, the solutions for all F copies of a processor
are combined to form a one-to-F mapping between the processors and the
partitions. The optimal solution for the TotalV metric and the corresponding
processor assignment of an example similarity matrix is shown in Fig. 7(a).

The fastest MWBG algorithm [11] can compute a matching in O(jV j2 log jV j+
jV jjEj) time, or in O(jV j1=2jEj log(jV jC)) time if all edge costs are integers of
absolute value at most C [13]. We have implemented the optimal algorithm
with a runtime of O(jV j3). SinceM is generally dense (jEj � jV j2), we do not
expect a dramatic performance gain from a faster implementation.

3.2.2 MaxV Metric

The metric MaxV, unlike TotalV, considers it more important to minimize
the maximum 
ow of data in or out of a processor than to minimize the to-
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(c)

TotalV moved = 570
MaxV moved = 255

MaxSR moved = 465
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(d)

TotalV moved = 550
MaxV moved = 260

MaxSR moved = 470

Fig. 7. Various cost metrics of a similarity matrix M for P = 4 and F = 1 using
(a) the optimal MWBG, (b) the optimal BMCM, (c) the optimal DBMCM, and
(d) our heuristic algorithms.

tal 
ow. During the remapping process, each processor packs and unpacks
send and receive bu�ers, incurs remote-memory latency, and rebuilds internal
and shared data structures. By minimizing max (� �max (ElemsSent); � �
max (ElemsRecd)), where � and � are machine-speci�c parameters, MaxV at-
tempts to reduce the total remapping time by minimizing the execution time
of the most heavily-loaded processor. We can solve this optimally by consider-
ing the problem of �nding a maximum cardinality matching whose maximum
edge cost is minimum. We refer to this as the bottleneck maximum cardinality

matching (BMCM) problem.

To �nd the BMCM of the graph G corresponding to the similarity matrix, we
�rst need to transform M into a new matrix M

0

. Each entry M
0

ij represents
the maximum cost of migrating data between processor i and partition j:

M
0

ij = max
�
(�

PX
y=1

Miy; y 6= j); (�
PX

x=1

Mxj ; x 6= i)
�
:

Optimally solving the BMCM problem is NP-complete for F > 1. For F = 2,
it is NP-complete by reduction from numerical matching with target sums; for
F > 2, it is NP-complete by reduction from 3-partition. We have implemented
the BMCM algorithm in [3] for F = 1 which combines a maximum cardinality
matching algorithm with a binary search, and runs in O(jV j1=2jEj log jV j). The
fastest known BMCM algorithm [12] has a runtime of O((jV j log jV j)1=2jEj).

The new processor assignment for the similarity matrix in Fig. 7 using this
approach with � = � = 1 is shown in Fig. 7(b). Notice that the total number of
elementsmoved in Fig. 7(b) is larger than the corresponding value in Fig. 7(a);
however, the maximum number of elements moved is smaller.
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3.2.3 MaxSR Metric

Our third metric, MaxSR, is similar to MaxV in the sense that the overhead
of the bottleneck processor is minimized during the remapping phase. MaxSR
di�ers, however, in that it minimizes the sum of the heaviest data 
ow from
any processor and to any processor, expressed as (� � max (ElemsSent) +
� � max (ElemsRecd)). We refer to this as the double bottleneck maximum
cardinality matching (DBMCM) problem. The MaxSR formulation allows us
to capture the computational overhead of packing and unpacking data, when
these two phases are separated by a barrier synchronization. Additionally, the
MaxSR metric also approximates the many-to-many communication pattern
of our remapping phase. Since a processor can either be sending or receiving
data, the overhead of these two phases should be modeled as a sum of costs.

We have developed an algorithm for computing the minimum MaxSR of the
graph G corresponding to our similaritymatrix.We �rst transformM to a new
matrix M

00

. Each entry M
00

ij contains a pair of values fSij; Rijg that indicate
the total cost of sending and receiving data, when partition j is mapped to
processor i:

M
00

ij =
n
Sij = (�

PX
y=1

Miy; y 6= j) ; Rij = (�
PX

x=1

Mxj ; x 6= i)
o
:

Let �1; �2; : : : ; �k be the distinct Sij values appearing inM
00

, sorted in increas-
ing order. Thus, �i < �i+1 and k � P 2. Form the bipartite graph Gi = (V;Ei),
where V consists of processor vertices u = 1; 2; : : : ; P and partition vertices
v = 1; 2; : : : ; P , and Ei contains edge (u; v) if Suv � �i; furthermore, edge (u; v)
has weight Ruv if it is in Ei.

For small values of i, graph Gi may not have a perfect matching. Let imin be
the smallest index such that Gimin

has a perfect matching. Obviously, Gi has
a perfect matching for all i � imin. Solving the BMCM problem of Gi gives a
matching that minimizes the maximum Rij edge weight. It gives a matching
with MaxSR value at most �i + MaxV(Gi). De�ning

MaxSR(i) = min
imin�j�i

(�j + MaxV(Gj));

it is easy to see that MaxSR(k) equals the correct value of MaxSR. Thus, our
algorithm computes MaxSR by solving k BMCM problems on the graphs Gi

and computing the minimum value MaxSR(k). However, we can prematurely
terminate the algorithm if there exists an imax such that �imax+1 � MaxSR(imax),
since it is then guaranteed that the MaxSR solution is MaxSR(imax).

The optimal algorithm for the MaxSRmetric is NP-complete for F > 1, because
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the underlying BMCM algorithm is also NP-complete. Our implementation
has a runtime of O(jV j1=2jEj2 log jV j) since the BMCM algorithm is called jEj
times in the worst case; however, it can be decreased to O(jEj2). The following
is a sketch of this more e�cient implementation.

Suppose we have constructed a matching � that solves the BMCM problem
of Gi for i � imin. We solve the BMCM problem of Gi+1 as follows. Initialize
a working graph G to be Gi+1 with all edges of weight greater than MaxV(Gi)
deleted. Take the matching � on G, and delete all unmatched edges of weight
MaxV(Gi). Choose an edge (u; v) of maximum weight in �, remove it from �

and G, and search for an augmenting path from u to v in G. If no such path
exists, we know that MaxV(Gi) = MaxV(Gi+1). If an augmenting path is found,
repeat this procedure by choosing a new edge (u0; v0) of maximum weight in
the matching and searching for an augmenting path. After some repetitions of
this procedure, the maximumweight of a matched edge will have decreased to
the desired value MaxV(Gi+1). At this point our algorithm to solve the BMCM
problem of Gi+1 will stop, since no augmenting path will be found.

This algorithm is of complexity O(jEj2) since each search for an augmenting
path uses O(jEj) time and there are O(jEj) such searches. A successful search
for an augmenting path for edge (u; v) permanently eliminates it from all
future graphs, so there are at most jEj successful searches. Furthermore, there
are at most jEj unsuccessful searches, one for each value of i.

The new processor assignment for the similarity matrix in Fig. 7 using the
DBMCM algorithm with � = � = 1 is shown in Fig. 7(c). Notice that the
MaxSR solution is minimized; however, the number of TotalV elements moved
is larger than the corresponding value in Fig. 7(a), and more MaxV elements
are moved than in Fig. 7(b). Also note that the optimal similarity matrix
solution for MaxSR is provably no more than twice that of MaxV.

3.2.4 Heuristic Algorithm

We have developed a heuristic greedy algorithm that gives a suboptimal so-
lution to the TotalV metric in O(jEj) steps [20]. The entries of the similarity
matrix are �rst sorted in descending order. Starting from the largest value, par-
titions are assigned to processors that have less than F partitions until done.
It has been proven that a processor assignment obtained using the heuristic
algorithm can never result in a data movement cost that is more than twice
that of the optimal TotalV assignment [20]. In addition, experimental results
in x4.3 demonstrate that our heuristic quickly �nds high quality solutions for
all three metrics. Applying this heuristic algorithm to the similarity matrix in
Fig. 7 generates the new processor assignment shown in Fig. 7(d).
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3.3 Remapping Cost Model

After the new partitions are reassigned to the processors, a model is required
to predict the redistribution cost for a given machine. Accurately estimating
this time is di�cult because of the number and complexity of the costs in-
volved in the remapping procedure. The total remapping cost includes the
computational overhead for rebuilding internal data structures and updating
shared boundary information. The communication overhead is architecture-
dependent and complicated because of the many-to-many collective commu-
nication pattern used by the remapper.

Our redistribution algorithm �rst removes the data objects moving out of a
partition and places them in a bu�er. A collective communication then ap-
propriately distributes the data to their �nal destination, where they are in-
tegrated into the data structures. Finally, the partition boundary information
is consistently updated. This remapping strategy closely follows the superstep
model of BSP [28].

The expected redistribution time on bandwidth-rich systems is then given by:


 � MaxSR+O;

where MaxSR = max (ElemsSent) + max (ElemsRecd), 
 is the total compu-
tation and communication cost to process each redistributed element, and O

is the predicted sum of all constant overheads [20]. This formulation demon-
strates the need to model and minimize the MaxSR metric when performing
processor reassignment. To compute the values of 
 and O, a simple least
squares �t through several data points for various redistribution patterns and
their corresponding runtimes can be used. This procedure needs to be per-
formed only once for each architecture, and the values of 
 and O can then
be used in actual computations to estimate the redistribution cost.

4 Experimental Results

The parallel 3D TAG mesh adaptation procedure and the PLUM global load
balancing strategy have been implemented in C and C++, with the parallel
activities in MPI for portability. All experiments were performed on the wide-
node SP2 at NASA Ames, the Origin2000 at NCSA, and the T3E at NASA
Goddard, without any machine-speci�c optimizations.

Our computational mesh is the one used to simulate the acoustics experiment
of Purcell [21] where a 1/7th-scale model of a UH-1H helicopter rotor blade

18



was tested over a range of Mach numbers. Detailed numerical results of the
simulation are given elsewhere [27]. This paper reports only on the perfor-
mance of parallel 3D TAG and PLUM.

Performance results are presented for one re�nement and one coarsening step
using various edge-marking strategies. Six strategies are used for the re�ne-
ment step. The �rst set of experiments, denoted as Rand 1R, Rand 2R,
and Rand 3R, consists of randomly bisecting 5%, 33%, and 60% of the edges
in the mesh, respectively. The second set, denoted as Real 1R, Real 2R,
and Real 3R, consists of bisecting the same numbers of edges using an error
indicator [27] derived from the actual solution. These strategies represent sig-
ni�cantly di�erent scenarios. In practice, mesh adaptation tends to be local.
The Rand cases are included as they are expected to behave somewhat ide-
ally because the computational loads are automatically balanced. Thus, the
Rand results should give an indirect indication of how well parallel 3D TAG
can really perform without explicit load balancing.

Since the coarsening procedure and performance are similar to the re�ne-
ment method, only two cases are presented where 7% of the edges in the
re�ned meshes obtained with the Rand 2R and the Real 2R strategies
are respectively coarsened randomly (Rand 2C) or based on actual solution
(Real 2C). Table 1 presents the progression of grid sizes through the two
adaptation steps for each edge-marking strategy.

Table 1
Grid sizes for the di�erent re�nement and coarsening strategies

Vertices Elements Edges Bdy Faces

Initial mesh 13,967 60,968 78,343 6,818

Rand 1R 18,274 82,417 104,526 7,672

Real 1R 17,880 82,489 104,209 7,682

Rand 2R 39,829 201,734 246,949 10,774

Real 2R 39,332 201,780 247,115 12,008

Rand 3R 60,916 320,919 389,686 15,704

Real 3R 61,161 321,841 391,233 16,464

Rand 2C 21,756 100,537 126,448 8,312

Real 2C 20,998 100,124 125,261 8,280
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4.1 Re�nement Phase

Table 2 presents the computation times (in secs) and parallel speedups for
the re�nement step with the random marking of edges (strategies Rand 1R,
Rand 2R, and Rand 3R). Note that the speedup values are calculated based
on the total time. Performance is excellent with e�ciencies of more than 83%
on 32 processors and 76% on 64 processors for the Rand 3R case. Parallel
mesh re�nement shows a markedly better performance for Rand 3R due to
its bigger computation-to-communication ratio. In general, the total speedup
will improve as the size of the re�ned mesh increases. This is because the mesh
adaptation time will increase while the percentage of elements along processor
boundaries will decrease.

Table 2
Performance of mesh re�nement when edges are bisected randomly

Rand 1R Rand 2R Rand 3R

Shared Comp Total Comp Total Comp Total

P Edges Time Speedup Time Speedup Time Speedup

1 0.0% 7.044 1.00 26.904 1.00 45.015 1.00

2 1.9% 3.837 1.84 13.878 1.94 22.762 1.98

4 3.7% 2.025 3.48 7.605 3.54 11.569 3.89

8 6.6% 1.068 6.58 4.042 6.65 5.913 7.61

16 8.8% 0.587 11.86 2.293 11.67 3.191 14.07

32 11.6% 0.330 20.72 1.338 19.78 1.678 26.62

64 15.3% 0.191 32.92 0.711 35.82 0.896 48.66

The communication time is less than 3% of the total time for up to 32 proces-
sors for all three cases. On 64 processors, the communication time although
still quite small, is more than 12% of the computation time for Rand 1R.
This is because each of the 64 partitions contains less than 1,000 elements
with more than 15% of the edges on partition boundaries. Since additional
work and storage are necessary for shared edges, the speedup deteriorates
as the percentage of such edges increases. The situation is much better for
Rand 3R since the computation time is signi�cantly higher.

Table 3 shows the computation times (is secs) and speedups when edges are
marked using a solution-based error indicator. Performance is extremely poor,
especially for Real 1R and Real 2R, with speedups of only 9.2X and 19.2X
on 64 processors, respectively. This is because mesh adaptation for practical
problems occurs in a localized region, causing an almost worst case load bal-
ance behavior. Elements are targeted for re�nement on only a small subset of
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Table 3
Performance of mesh re�nement when edges are bisected based on actual solution

Real 1R Real 2R Real 3R

Comp Total Comp Total Comp Total

P Time Speedup Time Speedup Time Speedup

1 5.902 1.00 23.780 1.00 41.702 1.00

2 3.979 1.48 18.117 1.31 26.317 1.58

4 2.530 2.33 9.173 2.59 14.266 2.92

8 1.589 3.71 7.091 3.35 8.430 4.95

16 1.311 4.48 4.046 5.87 4.363 9.55

32 0.879 6.65 2.277 10.40 2.278 18.25

64 0.616 9.22 1.224 19.16 1.148 35.95

the available processors. Most of the processors remain idle since none of their
assigned elements need to be re�ned. Performance is somewhat better for the
Real 3R strategy because the re�nement region is much larger. Since 60% of
all edges are bisected in this case, most of the processors are busy doing useful
work. This is re
ected by an e�ciency of more than 56% on 64 processors.

Note that the communication times constitute a much smaller fraction of the
total time compared to the cases when edges are bisected randomly. This is
due to the di�erence in the distribution of bisected edges. The Rand cases
require signi�cantly more communication among processors at the partition
boundaries because re�nement is scattered all over the problem domain. The
Real cases, on the other hand, require much less communication since the
re�ned regions are localized and mostly contained within partitions.

Poor parallel performance of the mesh re�nement code for the three Real
strategies is due to severe load imbalance. It is therefore worthwhile trying to
load balance this phase of 3D TAG as much as possible. This can be achieved
within PLUM by splitting the mesh re�nement step into two distinct phases of
edge marking and mesh subdivision. After edges are marked for bisection, it is
possible to exactly predict the new re�ned mesh before actually performing the
subdivision phase. This is because elements are independently re�ned based
on their binary patterns. The mesh is repartitioned if the edge markings are
skewed beyond a speci�ed tolerance. All necessary data is then appropriately
redistributed and the mesh elements are re�ned in their destination processors.
This enables the subdivision phase to perform in a more load balanced fashion.
As a bonus, a smaller volume of data has to be moved around since remapping
is performed before the mesh grows in size due to re�nement.
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Using this methodology, the threeReal cases were run again. Table 4 presents
the performance results of this \load balanced" mesh re�nement step. Com-
pared to the results in Table 3, the parallel speedups are now much higher. In
fact, the speedups for Real 2R consistently beat the corresponding speedups
for Rand 2R, while Real 3R outperforms Rand 3R when more than eight
processors are used. Even though the Rand cases are expected to behave
somewhat ideally, these results show that explicit load balancing can do bet-
ter. An e�ciency of 82% is attained for Real 3R on 64 processors, thereby
demonstrating that mesh adaptation can deliver excellent speedups if the
marked edges are scattered among the processors. Communication requires
a larger fraction of the total time for this load balanced strategy because the
mesh re�nement work is distributed among more processors after load bal-
ancing. However, communication times are still relatively small, requiring less
than 4% of the total time for all runs except for Real 1R on 64 processors.

Table 4
Performance of \load balanced" mesh re�nement

Real 1R Real 2R Real 3R

Comp Total Comp Total Comp Total

P Time Speedup Time Speedup Time Speedup

1 5.902 1.00 23.780 1.00 41.702 1.00

2 3.311 1.78 12.059 1.97 21.592 1.93

4 1.980 2.98 6.733 3.53 10.975 3.80

8 1.369 4.30 3.430 6.92 5.678 7.34

16 0.702 8.34 1.840 12.88 2.899 14.37

32 0.414 13.89 1.051 22.41 1.484 27.99

64 0.217 23.89 0.528 43.24 0.777 52.52

The e�ect of load balancing the re�ned mesh before performing the actual
subdivision can be seen more directly from the results presented in Table 5
for Rand 3R and Real 3R. The quality of load balance is de�ned as the
ratio of the number of elements on the most heavily-loaded processor to the
optimal number of elements per processor. For the Rand 3R strategy, the
mesh was re�ned without any load balancing. Two di�erent sets of results
are presented for Real 3R: one without load balancing (NLB) and the other
using the technique of load balanced mesh re�nement (LB). Notice that the
quality of load balance before re�nement is excellent, and identical, for both
Rand 3R and NLB Real 3R because the initial mesh is partitioned using
ParMETIS. However, after mesh re�nement, the load imbalance is severe, par-
ticularly for NLB Real 3R. The load imbalance is not too bad for Rand 3R

since edges are randomly marked for re�nement. This is re
ected by the dif-
ference in the speedup values in Tables 2 and 3. For LB Real 3R, the initial
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Table 5
Quality of load balance before and after mesh re�nement

Rand 3R NLB Real 3R LB Real 3R

P Before After Before After Before After

1 1.000 1.000 1.000 1.000 1.000 1.000

2 1.000 1.016 1.000 1.556 1.406 1.000

4 1.000 1.033 1.000 2.188 1.948 1.000

8 1.000 1.085 1.000 6.347 2.654 1.000

16 1.000 1.167 1.000 5.591 4.025 1.000

32 1.001 1.226 1.001 7.987 4.212 1.000

64 1.005 1.506 1.005 8.034 6.709 1.004

mesh is repartitioned after edge marking is complete. This imbalances the load
before re�nement, but generates partitions that are excellently balanced after
subdivision is complete. It also improves the speedup values signi�cantly.

4.2 Coarsening Phase

The coarsening phase consists of three major steps: marking edges to coarsen,
cleaning up all the data structures by removing the coarsened edges and their
associated vertices and tetrahedral elements, and �nally invoking the re�ne-
ment routine to generate a valid mesh from the remaining vertices.

Timings (in secs) and parallel speedups for the Rand 2C and the Real 2C
coarsening strategies are presented in Table 6. The follow-up mesh re�nement
times are not included because the goal was to demonstrate the parallel perfor-
mance of only the modules that are required during the coarsening phase. The
computation time in Table 6 is the time required to mark edges for coarsen-
ing. The communication time is negligible and not shown, but it was included
when calculating the speedup values. The cleanup time, on the other hand,
is always a signi�cant fraction of the total time. The cleanup time decreases
as more and more processors are used due to the reduction in the local mesh
size for each individual partition; however, since it depends on the fraction of
shared objects, performance deteriorates as the problem size is over-saturated
by processors. For instance, even though the total e�ciency is about 50% for
64 processors for the results in Table 6, the e�ciency when considering only
the cleanup times is barely 37%.
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Table 6
Performance of mesh coarsening

Rand 2C Real 2C

Comp Cleanup Total Comp Cleanup Total

P Time Time Speedup Time Time Speedup

1 3.619 2.364 1.00 3.989 2.246 1.00

2 1.832 1.352 1.88 2.026 1.283 1.88

4 0.963 0.782 3.42 1.066 0.854 3.25

8 0.572 0.498 5.57 0.600 0.498 5.68

16 0.303 0.287 10.01 0.334 0.279 10.17

32 0.170 0.170 16.95 0.167 0.161 19.01

64 0.070 0.098 31.17 0.093 0.097 32.82

4.3 Comparison of Reassignment Algorithms

Table 7 presents a comparison of our �ve di�erent processor reassignment al-
gorithms in terms of the reassignment time (in secs) and the amount of data
movement. Results are shown for the Real 2R strategy on the SP2 with
F = 1. The ParMETIS [16] case does not require any explicit processor reas-
signment since we choose the default partition-to-processor mapping given by
the partitioner. The poor performance is expected since ParMETIS is a global
partitioner that does not attempt to minimize the remapping overhead. A de-
tailed performance comparison of ParMETIS with other partitioners within
the PLUM framework is given in [5].

The execution times of the other four algorithms increase with the number of
processors because of the growth in the size of the similarity matrix; however,
the time for the heuristic algorithm on 64 processors is still very small. The
TotalV, MaxV, and MaxSR metrics are obviously minimized by the MWBG,
BMCM, and DBMCM algorithms, respectively. All the algorithms almost
match the minimum MaxV value given by BMCM. The extremely local re-
�nement in our test case requires the migration of a large number of elements
to achieve load balance, causing any reasonable reassignment algorithm to
return a similar MaxV solution.

The DBMCM algorithm optimally reduces MaxSR, but achieves no more than
a 5% improvement over the other algorithms. Nonetheless, since we believe
that the MaxSR metric can closely approximate the remapping cost on many
architectures, computing its optimal solution provides useful information. No-
tice that TotalV increases moderately as P grows from 32 to 64, while MaxSR
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Table 7
Comparison of reassignment algorithms for Real 2R on the SP2 with F = 1

P = 32 P = 64

TotalV MaxV MaxSR Reass. TotalV MaxV MaxSR Reass.

Algorithm Metric Metric Metric Time Metric Metric Metric Time

ParMETIS 58,297 5,067 7,467 0.000 67,439 2,667 4,452 0.000

MWBG 34,738 4,410 5,822 0.018 38,059 2,261 3,142 0.065

BMCM 49,611 4,410 5,944 0.032 52,837 2,261 3,282 0.133

DBMCM 50,270 4,414 5,733 0.092 54,896 2,261 3,121 1.252

Heuristic 35,032 4,410 5,809 0.002 38,283 2,261 3,123 0.009

is dramatically reduced. This trend continues as the number of processors in-
creases, and indicates that PLUM will remain viable on a large number of
processors, since the per processor workload decreases as P increases.

Finally, observe that the heuristic algorithm signi�cantly reduces all three cost
metrics in a trivial amount of time. Although theoretical bounds have only
been established for the TotalV metric, empirical evidence indicates that the
heuristic algorithm closely approximates both MaxV and MaxSR. Similar results
were obtained for the other edge-marking strategies. Our heuristic algorithm
has now been incorporated into ParMETIS [23], giving users the option of
global repartitioning while minimizing the remapping overhead.

4.4 Portability Analysis

The three left plots in Fig. 8 illustrate parallel speedups for the three edge-
marking strategies on the SP2, Origin2000, and T3E. Two sets of results are
presented for each machine, corresponding to the cases when data remapping
is performed after and before mesh re�nement. The Real 3R case shows the
best speedup values because it is the most computation intensive. Remapping
data before re�nement has the largest relative e�ect for Real 1R, because it
has the smallest re�nement region and predictively load balancing the re�ned
mesh returns the biggest bene�t.

To compare the performance on the three target machines more critically, one
needs to look at the actual times rather than the speedup values. Table 8 shows
how the execution time (in secs) is spent during the re�nement and subsequent
load balancing phases for the Real 2R case when data is remapped before
the subdivision phase. Notice that the T3E adaptation times are consistently
more than 1.4 times faster than the Origin2000 and three times faster than the
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Fig. 8. Re�nement speedup (left) and remapping time (right) within PLUM on the
SP2, Origin2000, and T3E, when data is redistributed either after or before mesh
re�nement.

SP2. One reason for this performance di�erence is the disparity in the clock
speeds of the three machines. Another reason is that the mesh adaptation code
does not use the 
oating-point units on the SP2, thereby adversely a�ecting
its overall performance.

The three right plots in Fig. 8 show the remapping times. In almost every
case, a signi�cant reduction is achieved when the adapted mesh is predictively
load balanced. This is because the mesh grows in size only after the data has
been redistributed. The remapping times also usually decrease as the number
of processors is increased because more processors are available to share the

26



Table 8
Anatomy of execution times for Real 2R on the Origin2000, SP2, and T3E

Adaptation Time Remapping Time Partitioning Time

P O2000 SP2 T3E O2000 SP2 T3E O2000 SP2 T3E

2 5.261 12.06 3.455 3.005 3.440 2.648 0.628 0.815 0.701

4 2.880 6.734 1.956 3.005 3.440 1.501 0.584 0.537 0.477

8 1.470 3.434 1.034 2.963 3.321 1.449 0.522 0.424 0.359

16 0.794 1.846 0.568 2.346 2.173 0.880 0.396 0.377 0.301

32 0.458 1.061 0.333 0.491 1.338 0.592 0.389 0.429 0.302

64 0.550 0.188 0.890 0.778 0.574 0.425

128 0.121 1.894 0.599

increase in the total volume of data movement. The remapping times when
data is moved before mesh re�nement are reproduced for the Real 2R case
in Table 8 since the exact values are di�cult to read o� the log-scale.

A peculiarity of these results is the behavior of the T3E when P � 64. When
using up to 32 processors, the T3E closely follows the redistribution cost model
given in x3.3; however, for 64 and 128 processors, the remapping overhead be-
gins to increase even though the MaxSR metric continues to decrease. The
runtime di�erence when data is remapped before and after re�nement is dra-
matically diminished; in fact, all the remapping times begin to converge to
a single value! This indicates that the remapping time is no longer a�ected
only by the volume of data redistributed but also by the interprocessor com-
munication pattern. One potential solution would be to take advantage of the
T3E's ability to e�ciently perform one-sided communication.

Table 8 also presents the ParMETIS partitioning times for Real 2R on all
three systems; the results for Real 1R and Real 3R are almost identical
because the time to repartition mostly depends on the initial problem size.
All these results generally demonstrate that ParMETIS is fast enough to be
used in our load balancing framework, that our methodology within PLUM is
e�ective in signi�cantly reducing the data remapping time and improving the
parallel performance of mesh re�nement, and that PLUM can be successfully
ported to di�erent platforms without any code modi�cations.

5 Conclusions

Dynamic mesh adaptation on unstructured grids is a powerful tool for solving
problems that require grid modi�cations to e�ciently resolve physical features
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of interest. For such problems, the coarsening/re�nement step must be per-
formed frequently, so its e�ciencymust be comparable to that of the numerical
solver. Furthermore, with the ubiquity of parallel computing, it is impera-
tive to have e�cient parallel implementations of adaptive unstructured-grid
algorithms. Unfortunately, parallel local mesh adaptation requires dynamic
load balancing. In this paper, we described the parallel implementation of the
3D TAG unstructured mesh adaptation algorithm and veri�ed the e�ective-
ness of the PLUM load balancer for a helicopter rotor blade acoustics problem.

Six re�nement and two coarsening cases were investigated with varying frac-
tions of a realistic-sized domain being targeted for re�nement. We demon-
strated excellent parallel performance when repartitioning and remapping the
mesh in a load balanced fashion after edges were targeted for re�nement but
before performing the actual subdivision. We presented three generic metrics
to model the remapping cost on most multiprocessor systems. Optimal algo-
rithms for these metrics, as well as a heuristic approach were described and
implemented. It was shown that the heuristic algorithm quickly �nds a so-
lution that reduces all three metrics. Additionally, we showed that the data
redistribution overhead can be signi�cantly reduced by applying our heuristic
processor reassignment algorithm to the default mapping given by a global
partitioner. Portability was demonstrated by presenting results on the three
vastly di�erent architectures of the SP2, Origin2000, and T3E, without the
need for any code modi�cations. Overall, the results showed that our parallel
mesh adaptation and dynamic load balancing strategies will remain viable on
large numbers of processors.
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